skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Unterborn, Cayman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lava worlds are a potential emerging population of Super-Earths that are on close-in orbits around their host stars, with likely partially molten mantles. To date, few studies have addressed the impact of magma on the observed properties of a planet. At ambient conditions, magma is less dense than solid rock; however, it is also more compressible with increasing pressure. Therefore, it is unclear how large-scale magma oceans affect planet observables, such as bulk density. We updateExoPlex, a thermodynamically self-consistent planet interior software, to include anhydrous, hydrous (2.2 wt% H2O), and carbonated magmas (5.2 wt% CO2). We find that Earth-like planets with magma oceans larger than ∼1.5Rand ∼3.2Mare modestly denser than an equivalent-mass solid planet. From our model, three classes of mantle structures emerge for magma ocean planets: (1) a mantle magma ocean, (2) a surface magma ocean, and (3) one consisting of a surface magma ocean, a solid rock layer, and a basal magma ocean. The class of planets in which a basal magma ocean is present may sequester dissolved volatiles on billion-year timescales, in which a 4Mmass planet can trap more than 130 times the mass of water than in Earth’s present-day oceans and 1000 times the carbon in the Earth’s surface and crust. 
    more » « less